首页 | 本学科首页   官方微博 | 高级检索  
     检索      

石墨烯环氧涂层的耐磨耐蚀性能研究
引用本文:刘栓,姜欣,赵海超,顾林,王永欣,李金龙,余海斌,陈建敏.石墨烯环氧涂层的耐磨耐蚀性能研究[J].摩擦学学报,2015,35(5):598-605.
作者姓名:刘栓  姜欣  赵海超  顾林  王永欣  李金龙  余海斌  陈建敏
作者单位:中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201;中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201;中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201;中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201;中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201;中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201;中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201;中国科学院海洋新材料与应用技术重点试验室 浙江省海洋材料与防护技术重点试验室, 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201
基金项目:国家自然科学基金(51275509,41506098)、国家973项目(2013CB632300)和中国科学院财政资助.
摘    要:将石墨烯水分散液添加到双组份水性环氧树脂中制备石墨烯固体润滑涂层,采用交流阻抗谱和动电位极化曲线研究了涂层在模拟海水(3.5%Na Cl溶液)中的电化学腐蚀行为和失效过程;采用UMT-3摩擦磨损试验机评价了三种石墨烯基环氧涂层在干摩擦和海水环境条件下的滑动摩擦磨损行为,并分析了其磨痕形貌和磨损机理.结果表明:石墨烯可以明显提高水性环氧的涂层电阻和电荷转移电阻,并降低环氧涂层在干燥条件与海水环境的摩擦系数和磨损率;石墨烯环氧涂层的摩擦系数和磨损率在海水环境中均比干摩擦低.

关 键 词:石墨烯  水性环氧涂层  腐蚀  摩擦  磨损

Corrosion Resistance and Wear Property of Graphene-Epoxy Coatings
LIU Shuan,JIANG Xin,ZHAO Hai-chao,GU Lin,WANG Yong-xin,LI Jin-long,YU Hai-bin and CHEN Jian-min.Corrosion Resistance and Wear Property of Graphene-Epoxy Coatings[J].Tribology,2015,35(5):598-605.
Authors:LIU Shuan  JIANG Xin  ZHAO Hai-chao  GU Lin  WANG Yong-xin  LI Jin-long  YU Hai-bin and CHEN Jian-min
Institution:Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract:The solid lubricant graphene coating was prepared by adding aqueous dispersion of graphene into twocomponent waterborne epoxy coatings. The electrochemical corrosion behavior and failure process were investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy in simulated seawater (3.5% NaCl solution). The sliding friction and wear behavior, wear scar morphology and wear mechanism of the three grapheneepoxy coatings were analyzed by UMT-3 tribology tester in dry condition and seawater environment, respectively. Results indicated that the graphene obviously improved the coating resistance and charge transfer resistance of the epoxy coating, also reduced the friction coefficient and wear rate of the epoxy coating, Friction coefficient and wear rate of graphene-epoxy coating in seawater were lower than that in dry condition.
Keywords:graphene  waterborne epoxy coating  corrosion  friction  wear
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《摩擦学学报》浏览原始摘要信息
点击此处可从《摩擦学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号