首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wake modes of a cylinder undergoing free streamwise vortex-induced vibrations
Institution:1. Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;2. Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
Abstract:Simultaneous measurements of the response of a circular cylinder experiencing vortex-induced vibrations (VIVs) in the streamwise direction and the resulting wake field were performed for a range of reduced velocities using time-resolved Particle-Image Velocimetry in the Reynolds number range 450–3700. The dominant vortex shedding mode was identified using phase-averaged vorticity fields. The cylinder response amplitude was characterised by two response branches, separated by a low amplitude region at resonance, as has been previously reported in the literature. During the first response branch the wake exhibited not only the symmetric S-I mode, but also the alternate A-II mode at slightly higher reduced velocities. For both modes, the vortices were observed to be shed at the cylinder response frequency, but rearranged downstream into a more stable structure in which the velocity fluctuations were no longer synchronised to the cylinder motion. A special case of the A-II mode, referred to as the SA mode, was found to dominate in the second response branch and the low amplitude region, while the far wake and the cylinder motion were synchronised (lock-in). A change in the timing of the vortex shedding with respect to the cylinder motion was observed between the low amplitude region and the second response branch. This is likely to correspond to a change in the fluid forcing and levels of excitation, and may explain the variation in the cylinder amplitude observed in this region. Lock-in and the second response branch were found to coincide with a contraction of the wake and an increase in strength of the shed vortices. This work reveals the inherent differences between the extensively studied case of transverse-only VIV and the streamwise-only case, which is crucial if the wealth of information available on transverse VIV is to be extended to the more practical two degree-of-freedom case.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号