首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variational formulation of ideal fluid flows according to gauge principle
Authors:Tsutomu Kambe  
Institution:

aIDS, Higashi-yama 2-11-3, Meguro-ku, Tokyo 153-0043, Japan

Abstract:On the basis of the gauge principle of field theory, a new variational formulation is presented for flows of an ideal fluid. The fluid is defined thermodynamically by mass density and entropy density, and its flow fields are characterized by symmetries of translation and rotation. The rotational transformations are regarded as gauge transformations as well as the translational ones. In addition to the Lagrangians representing the translation symmetry, a structure of rotation symmetry is equipped with a Lagrangian ΛA including the vorticity and a vector potential bilinearly. Euler's equation of motion is derived from variations according to the action principle. In addition, the equations of continuity and entropy are derived from the variations. Equations of conserved currents are deduced as the Noether theorem in the space of Lagrangian coordinate a. Without ΛA, the action principle results in the Clebsch solution with vanishing helicity. The Lagrangian ΛA yields non-vanishing vorticity and provides a source term of non-vanishing helicity. The vorticity equation is derived as an equation of the gauge field, and the ΛA characterizes topology of the field. The present formulation is comprehensive and provides a consistent basis for a unique transformation between the Lagrangian a space and the Eulerian x space. In contrast, with translation symmetry alone, there is an arbitrariness in the transformation between these spaces.
Keywords:Gauge principle  Variational formulation  Ideal fluid  Vorticity  Chern–Simons term
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号