首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In search of physical parameters influenced by flow patterns in a heterogeneous two-phase mixture in microchannels using concomitant measurements
Authors:Jerry K Keska  William E Simon
Institution:College of Engineering, University of Louisiana at Lafayette, 109 Devon Way, Youngsville, LA 70592, USA
Abstract:Space transportation systems require high-performance thermal protection and fluid management for systems ranging from cryogenic fluid devices to primary structures, and for propulsion systems exposed to extremely high temperatures, and other space systems, e.g., integrated circuits and cooling/environment control devices for advanced space suits. Although considerable developmental effort is underway to bring promising technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the Advanced Micro Cooling Module (AMCM), essentially a compact two-phase heat exchanger constructed of microchannels and designed to rapidly remove large quantities of heat from critical systems by incorporating phase transition. This paper describes the results of experimental research in two-phase flow phenomena, encompassing both an experimental and an analytical approach to the incorporation of flow patterns for air–water mixtures flowing in microchannels. Specifically addressed are: (1) design and construction of a sensitive two-phase experimental system which measures both ac and dc components of in situ physical mixture parameters including spatial concentration, using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of in situ physical parameters, and assessment of their validity for application in flow pattern determination.
Keywords:Experimental data analysis  Multiphase heterogeneous mixture flow  Concomitant concentration measurements  Microchannels
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号