首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of flow over an airfoil in heavy rain via a two-way coupled Eulerian–Lagrangian approach
Institution:1. Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China;2. Shandong Electric Power Engineering Consulting Institute Corp., LTD, Jinan, Shandong, 250013, China
Abstract:Airfoil performance degradation in heavy rain has attracted many aeronautical researchers’ eyes. In this work, a two-way momentum coupled Eulerian–Lagrangian approach is developed to study the aerodynamic performance of a NACA 0012 airfoil in heavy rain environment. Scaling laws are implemented for raindrop particles. A random walk dispersion approach is adopted to simulate raindrop dispersion due to turbulence in the airflow. Raindrop impacts, splashback and formed water film are modeled with the use of a thin liquid film model. The steady-state incompressible air flow field and the raindrop trajectory are calculated alternately through a curvilinear body-fitted grid surrounding the airfoil by incorporating an interphase momentum coupling term. Our simulation results of aerodynamic force coefficients agree well with the experimental results and show significant aerodynamic penalties at low angles of attack for the airfoil in heavy rain. An about 3° rain-induced increase in stall angle of attack is predicted. The loss of boundary momentum by raindrop splashback and the effective roughening of the airfoil surface due to an uneven water film are testified to account for the degradation of airfoil aerodynamic efficiency in heavy rain environment.
Keywords:Multiphase flow  Eulerian–Lagrangian  Airfoil  Heavy rain  Water film  Aerodynamic degradation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号