首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Critical state shear behavior of the soil-structure interface determined by discrete element modeling
Institution:1. State Key Laboratory of Hydroscience and Hydraulic Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China;2. Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
Abstract:The interface between soil and structure can be referred to as a soil-structure system, and its behavior plays an important role in many geotechnical engineering practices. In this study, results are presented from a series of monotonic direct shear tests performed on a sand-structure interface under constant normal stiffness using the discrete element method (DEM). Strain localization and dilatancy behavior of the interface is carefully examined at both macroscopic and microscopic scales. The effects of soil initial relative density and normal stress on the interface shear behavior are also investigated. The results show that a shear band progressively develops along the structural surface as shear displacement increases. At large shear displacement a unique relationship between stress ratio and void ratio is reached in the shear band for a certain normal stress, indicating that a critical state exists in the shear band. It is also found that the thickness and void ratio of the shear band at the critical state decreases with increasing normal stress. Comparison of the DEM simulation results with experimental results provides insight into the shear behavior of a sand-structure interface and offers a means for quantitative modeling of such interfaces based on the critical state soil mechanics.
Keywords:Discrete element method  Interface  Direct shear test  Shear band  Dilatancy  Critical state
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号