首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical study on the shear-flow behavior and transport process in rough rock fractures
Authors:Yubao Zhang  Na Huang
Institution:1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China;2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China;3. School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, 8528521 Nagasaki, Japan
Abstract:This paper presents a systematic research for understanding mechanical shearing effects on the fluid flow and the solute transport behavior of rough fractures through a numerical simulation approach. The aperture fields were modeled based on a real rock fracture geometry and the normal displacement obtained from the shear-flow test. The fluid flow through the rough fracture under shear was simulated using a finite element code that solves the Reynolds equation, and the transport behavior through the rough fracture under shear was simulated calculating the advection–dispersion equation. The results show that the fracture apertures increase as the shear displacement increases, with a few major flow channels detected through the fracture. The shear-induced flow channels increase both flow connectivity and transport connectivity, which accelerate the movement of solutes in a particular direction and lead to early breakthrough of the contaminants. Adsorption, acting as a retardation term, has a decisive influence on the transport process. These results can give a basic knowledge of the hydromechanical and solute transport progress through fracture, and will be helpful to safety assessment for high-level radioactive waste disposal facilities.
Keywords:Rock fracture  Shear effects  Hydro-mechanical behavior  Solute transport
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号