首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulations of Turbulent Non-Premixed Counterflow Flames with First-Order Conditional Moment Closure
Authors:I S Kim  E Mastorakos
Institution:(1) Hopkinson Laboratory, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, U.K.
Abstract:Simulations of turbulent CH4-air counterflow flames are presented, obtained in terms of zero and two-dimensional first-order Conditional Moment Closure (CMC) to study the flame structure and extinction limits. The CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using a commercial CFD software employing a Reynolds stress turbulence model and additional transport equations for the turbulent scalar flux and for the mean scalar dissipation rate. Two detailed chemical mechanisms and different conditional scalar dissipation rate models have been examined and small differences were found.The first-order CMC captures the overall structure of the counterflow flame accurately for the unconditional averages. The calculated conditional averages behave as if the scalar dissipation rate were under-predicted, although a comparison with measurement of the conditional scalar dissipation rate is reasonable. The calculated extinction velocity is found to be much higher than the experimental value, but the trend of increasing extinction velocity with air dilution of the fuel stream is captured well. The discrepancies with the data are mostly attributed to the neglect of conditional fluctuations.
Keywords:conditional moment closure  counterflow flames  extinction limit
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号