首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser
Authors:Patrik Vrábel
Institution:Department of Analytical Chemistry, Faculty of Science, Masaryk University, Kotlá?ská 2, 611 37 Brno, Czech Republic
Abstract:Capillary electrophoresis with laser-induced fluorescence detection (CELIF) is a powerful tool for separation and sensitive determination of fluorescent species. Biologically active compounds, such as amino acids, peptides and proteins may exhibit native fluorescence, which is however often low and/or an expensive laser is required for excitation in UV. Therefore, labelling of the analytes with a fluorescent dye is usually necessary.In this work, a home-built CELIF instrument with diode pumped frequency-doubled continuous wave Nd:YAG excitation laser with feedback power regulation (532 nm) was constructed. The suitability of this type of laser for LIF detection in a separation method was found excellent. A limit of detection (LOD) (S/N=3) of 2×10−13 mol/l was achieved with rhodamine B, which is comparable to those obtained using similar instruments with Ar+ laser Y.F. Cheng, N.J. Dovichi, Science 242 (1988) 562, E.S. Yeung et al., J. Chromatogr. 608 (1992) 73]. LOD of a protein derivatized according to modified procedures M.J. Little et al., Anal. Chim. Acta 339 (1997) 279, A. Chersi et al., Biochim. Biophys. Acta 1336 (1997) 83] was determined. Detection of the derivatives was found to be limited by insufficient reaction recovery at low analyte concentration, chemical noise, separation efficiency and quality of the derivatizing reagent rather than by the detector performance. As a consequence, a huge gap between the detection ability of CELIF instruments and LOD determined in real samples is revealed.
Keywords:Capillary electrophoresis  Fluorescence  Derivatization  Proteins  Rhodamine  532   nm Laser
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号