首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of a wavelength selection method using near-infrared spectroscopy and partial least squares with false nearest neighbors and its application in the detection of the chemical oxygen demand of waste liquid
Abstract:Abstract

The spectral wavelength selection method is important in near-infrared spectroscopy. Eliminating redundant information and extracting useful information can improve the prediction accuracy and modeling efficiency of the quantitative analysis model for spectral analysis to obtain a near-infrared calibration model with strong predictability and good robustness. This paper proposes a wavelength selection method for near-infrared spectroscopy by combining the partial least squares and false nearest neighbor methods. In this method, the correlation between the characteristic wavelength variables and the measured index is assessed by means of a similarity-based distance measure of the characteristic wavelength variable, and the characteristic wavelength is selected according to the order of the correlation. The method was used to select characteristic wavelengths from the near-infrared spectrum of waste liquid to establish a prediction model for the chemical oxygen demand. Compared with the full-spectrum partial least squares and interval partial least squares based models, the number of characteristic wavelength variables is reduced from 1557 to 176, and the prediction accuracy of the model is improved. This method both simplifies the model and achieves higher prediction accuracy. Therefore, this study provides a novel solution for wavelength selection for multivariate calibration in near-infrared spectroscopy.
Keywords:FNN  PLS  NIR  wavelength selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号