首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting optimal drive sweep rates for autoresonance in Duffing-type oscillators: A beat method using Teager-Kaiser instantaneous frequency
Authors:Carey Witkov  Larry S Liebovitch
Institution:Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
Abstract:Sustained resonance in a linear oscillator is achievable with a drive whose constant frequency matches the resonant frequency of the oscillator. But in oscillators with nonlinear restoring forces such as the pendulum, Duffing and Duffing-Van der Pol oscillator, the resonant frequency changes as the amplitude changes, so a constant frequency drive results in a beat oscillation instead of sustained resonance. Duffing-type nonlinear oscillators can be driven into sustained resonance, called autoresonance, when the drive frequency is swept in time to match the changing resonant frequency of the oscillator. We find that near-optimal drive linear sweep rates for autoresonance can be estimated from the beat oscillation resulting from constant frequency excitation. Specifically, a least squares estimate of the Teager-Kaiser instantaneous frequency versus time for the beat response to a stationary drive provides a near-optimal estimate of the nonstationary drive linear sweep rate needed to sustain resonance in the pendulum, Duffing and Duffing-Van der Pol oscillators. We confirm these predictions with model-based numerical simulations. An advantage of the beat method of estimating optimal drive sweep rates for maximal autoresonant response is that no model is required so experimentally generated beat oscillation data can be used for systems where no model is available.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号