首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The use of pseudo-faults for damage location in SHM: An experimental investigation on a Piper Tomahawk aircraft wing
Authors:Evangelos Papatheou  Graeme MansonRobert J Barthorpe  Keith Worden
Institution:Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Abstract:The application of pattern recognition-based approaches in damage localisation and quantification will eventually require the use of some kind of supervised learning algorithm. The use, and most importantly, the success of such algorithms will depend critically on the availability of data from all possible damage states for training. It is perhaps well known that the availability of damage data through destructive means cannot generally be afforded in the case of high value engineering structures outside laboratory conditions. This paper presents the attempt to use added masses in order to identify features suitable for training supervised learning algorithms and then to test the trained classifiers with damage data, with the ultimate purpose of damage localisation. In order to test the approach of adding masses, two separate cases of a dual-class classification problem, representing two distinct locations, and a three-class problem representing three distinct locations, are examined with the help of a full-scale aircraft wing. It was found that an excellent rate of correct classification could be achieved in both the dual-class and three-class cases. However, it was also found that the rate of correct classification was sensitive to the choices made in training the supervised learning algorithm. The results for the dual-class problem demonstrated a comparatively high level of robustness to these choices with a substantially lower robustness found in the three-class case.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号