首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of boundaries on structure formation in low-dimensional colloid model systems near the liquid-solid-transition in equilibrium and in external fields and under shear
Authors:S Deutschländer  K Franzrahe  B Heinze  P Henseler  P Keim  N Schwierz  U Siems  P Virnau  D Wilms  K Binder  G Maret  P Nielaba
Institution:1. Physics Department, University of Konstanz, 78457, Konstanz, Germany
2. Institut für Physik, Johannes Gutenberg-Universit?t Mainz, Staudinger Weg 7, 55099, Mainz, Germany
3. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128, Mainz, Germany
Abstract:A brief review focusing on low-dimensional colloidal model systems is given describing both simulation studies and complementary experiments, elucidating the interplay between phase behavior, geometric structures, and transport phenomena. These studies address the response of these very soft colloidal systems to perturbations such as uniform or uniaxial compression, laser fields, randomly quenched disorder, and shear deformation caused by moving boundaries. Binary hard-disk mixtures are studied by Monte Carlo simulation, to investigate ordering on surfaces or in monolayers, modeling the effect of a substrate by an external potential. By weak external laser fields the miscibility of the mixture can be controlled, and the underlying mechanism (laser-induced demixing) is clarified. The stability of various space-filling structures is discussed only for the case where no laser fields are present.Hard spheres interacting with repulsive screened Coulomb or dipolar interaction confined in 2D and 3D narrow constrictions are investigated by Brownian Dynamics simulation. With respect to the structural behavior, it is found that layers or planes throughout the microchannel are formed. The arrangement of the particles is disturbed by diffusion, and can also be modified by an external driving force causing a density gradient along the channel. Then the number of layers or planes gets reduced, adjusting to the density gradient, and this self-organized change of order also shows up in the particle velocities. The experimental work that is reviewed here addresses dipolar colloidal particles confined by gravity on a solid substrate on which a set of pinning sites has been randomly distributed. The dynamics of the system is studied by tracking the trajectories of individual particles, and it is found that the mean square displacements of particles that are nearest neighbors of pinned particles are strongly affected by these defects. The influence of the pinning sites on the order and microscopic mechanism of phase transitions in two dimensions is investigated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号