首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlled synthesis of porous nickel oxide nanostructures and their electrochemical capacitive behaviors
Authors:Dewei Wang  Qihua Wang  Tingmei Wang
Institution:1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s Republic of China
2. Graduate School of Chinese Academy of Sciences, Beijing, 10039, People’s Republic of China
Abstract:Achieving precise control over the synthesis and properties of porous nanostructured materials has been garnering considerable recent research attention. In the work presented here, nickel oxalate nanostructures with controllable shapes were synthesized through a simple and facile wet-chemistry route without any surfactant. An interesting shape evolution process from 2D nanoflakes to 1D nanorods has been illustrated on the basis of time-dependent experimental studies. Subsequent calcination at 380 °C yielded porous NiO nanostructures that retained the morphologies of their predecessors. The phase composition, morphology, and structure of the as-obtained products were studied by various tools. Electrochemical properties of the NiO electrodes were carried out using cyclic voltammetry and galvanostatic charge–discharge measurements by a three-electrode system. Electrochemical studies reveal that the as-prepared mesoporous NiO nanostructures have good specific capacitance and exhibit excellent capacity retention for more than 1,000 cycles due to its porous character and morphology. The results suggest that mesoporous NiO nanostructures are a promising supercapacitor electrode material.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号