首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lithium ion conductivity of Li5+xBaxLa3?xTa2O12 (x?=?0–2) with garnet-related structure in dependence of the barium content
Authors:Ramaswamy Murugan  Venkataraman Thangadurai and Werner Weppner
Institution:(1) Sensors and Solid State Ionics, Faculty of Engineering, University of Kiel, Kaiserstr. 2., 24143 Kiel, Germany;(2) Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
Abstract:The stoichiometry range and lithium ion conductivity of Li5+x Ba x La3−x Ta2O12 (x = 0, 0.25, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00) with garnet-like structure were studied. The powder X-ray diffraction data of Li5+x Ba x La3−x Ta2O12 indicated that single phase oxides with garnet-like structure exist over the compositional range 0 ≤ x ≤ 1.25; while for x = 1.5, 1.75 and 2.00, the presence of second phase in addition to the major garnet like phase was observed. The cubic lattice parameter increases with increasing x and reaches a maximum at x = 1.25 then decreases slightly with further increase in x in Li5+x Ba x La3−x Ta2O12. The impedance plots of Li5+x Ba x La3−x Ta2O12 samples obtained at 33 °C indicated a minimum grain-boundary resistance (R gb) contribution to the total resistance (R b + R gb) at x = 1.0. The total (bulk + grain boundary) ionic conductivity increases with increasing lithium and barium content and reaches a maximum at x = 1.25 and then decreases with further increase in x in Li5+x Ba x La3−x Ta2O12. Scanning electron microscope investigations revealed that Li6.25Ba1.25La1.75Ta2O12 is much more dense, and the grains are more regular in shape. Among the investigated compounds, Li6.25Ba1.25La1.75Ta2O12 exhibits the highest total (bulk + grain boundary) and bulk ionic conductivity of 5.0 × 10−5 and 7.4 × 10−5 S/cm at 33 °C, respectively.
Keywords:Garnet-like structure  Solid electrolyte  Li ion conductivity  AC impedance  Fast ionic conduction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号