首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equilibration in the Kac Model Using the GTW Metric $$d_2$$
Authors:H Tossounian
Institution:1.School of Mathematics,Georgia Institute of Technology,Atlanta,USA
Abstract:We use the Fourier based Gabetta–Toscani–Wennberg metric \(d_2\) to study the rate of convergence to equilibrium for the Kac model in 1 dimension. We take the initial velocity distribution of the particles to be a Borel probability measure \(\mu \) on \(\mathbb {R}^n\) that is symmetric in all its variables, has mean \(\vec {0}\) and finite second moment. Let \(\mu _t(dv)\) denote the Kac-evolved distribution at time t, and let \(R_\mu \) be the angular average of \(\mu \). We give an upper bound to \(d_2(\mu _t, R_\mu )\) of the form \(\min \left\{ B e^{-\frac{4 \lambda _1}{n+3}t}, d_2(\mu ,R_\mu )\right\} ,\) where \(\lambda _1 = \frac{n+2}{2(n-1)}\) is the gap of the Kac model in \(L^2\) and B depends only on the second moment of \(\mu \). We also construct a family of Schwartz probability densities \(\{f_0^{(n)}: \mathbb {R}^n\rightarrow \mathbb {R}\}\) with finite second moments that shows practically no decrease in \(d_2(f_0(t), R_{f_0})\) for time at least \(\frac{1}{2\lambda }\) with \(\lambda \) the rate of the Kac operator. We also present a propagation of chaos result for the partially thermostated Kac model in Tossounian and Vaidyanathan (J Math Phys 56(8):083301, 2015).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号