首页 | 本学科首页   官方微博 | 高级检索  
     检索      


General approach for fabricating nanoparticle arrays via patterned block copolymer nanoreactors
Authors:Xihong Zu  Weiping Tu  Yulin Deng
Institution:(1) School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People’s Republic of China;(2) School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA;
Abstract:A general approach to fabricate nanoparticle arrays of different kinds of materials is demonstrated in this paper. It was found that the center-to-center distance of the nanoparticles or the nanoclusters can be controlled using patterned block copolymer nanoreactors by adding polystyrene (PS) homopolymer to poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymer thin film. The number of the nanoparticles formed in the P4VP nanodomains can also be adjusted by addition of polystyrene (PS) homopolymer to poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymer. In fabrication of Au nanoparticle arrays, HAuCl4 precursor was directly loaded into P4VP nanodomains of the diblock copolymer thin film by using a methanol solvent, which is a good solvent for P4VP but non-solvent for PS. The Au nanoparticle arrays were then obtained by reducing HAuCl4 with sodium citrate dihydrate, and then in situ transferred to silicon substrate by a two-step calcination method. ZnO and Fe x O y nanoparticle arrays were also synthesized by this approach with thermal decomposition and double decomposition reactions, respectively. Additionally, the advantage of using two-step calcination method over the air plasma method was discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号