首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aerosol flow in a tube furnace reactor of gas-phase synthesised silver nanoparticles
Authors:Mitrakos  D  Jokiniemi  J  Backman  U  Housiadas  C
Institution:1.“Demokritos” National Centre for Scientific Research,Agia Paraskevi, Athens,Greece;2.Faculty of Mechanical Engineering,National Technical University of Athens,Athens,Greece;3.Fine Particles,VTT Technical Research Centre of Finland,VTT, Espoo,Finland;4.Department of Environmental Sciences, Fine Particle and Aerosol Technology Laboratory,University of Kuopio,Kuopio,Finland
Abstract:In a previous work, gas-phase synthesis of silver nanoparticles through evaporation of silver powder and subsequent particle nucleation by cooling was shown to be a viable method for achieving high purity silver nanoparticles (Backman et al. J Nanopart Res 4:325–335, 2002). In order to control the size of the produced nanoparticles, careful design of the reactor is required with respect to thermal and flow characteristics. In the present work, the silver nanoparticle reactor is rigorously simulated by means of multidimensional computational fluid and particle dynamics. The CFD-computed flow is input for a combined simulation of the vapour field and particle homogeneous nucleation, growth and coagulation. The results are compared with the experimental data and with the predictions from the usually employed simple model of an idealized plug flow reactor. The multidimensional CFD-based analysis is shown to explain and help understand different aspects of the reactor operation and size distribution of the particles produced. Yet the simple plug flow method is found to provide reasonable accuracy when an appropriate correction factor is used for the nucleation rate. Considering its robustness and computational simplicity, the plug flow method can be qualified as adequate from the engineering practical point of view for the case of silver nanoparticle reactors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号