首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Matrix-based paraxial skew ray-tracing in 3D systems with non-coplanar optical axis
Authors:Psang Dain Lin  Chi-Kuen Sung
Institution:aDepartment of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
Abstract:Matrix-based Gaussian paraxial ray-tracing is commonly used for first estimates in early design stages of optical systems. However, the usual techniques are suitable only for rays in systems with a common straight-line optical axis, and cannot be used in systems containing mirrors and/or prisms. Attard extended these methods to matrix-based skew ray-tracing for systems containing cylindrical lenses with orthogonal cylinder axes and spherical lenses with combinations of cylindrical lenses, but had problems with non-straight and non-coplanar optical relations. This paper develops a novel general matrix method for paraxial skew ray-tracing in systems with non-coplanar optical axes containing spherical and flat boundary surfaces. First-order Taylor series expansion is used to approximate skew ray-tracing equations in simple repetitive linear matrix form. Sufficiently good accuracy is obtained if the proposed method is restricted to skew rays in the immediate neighborhood of the optical axis, as demonstrated by numerical examples. This study extends earlier Matrix-based paraxial ray-tracing design technique to include non-coplanar systems containing mirrors and/or reflecting prisms such as projectors, with special application potential for first estimates in early design stages of 3D optical systems.
Keywords:Paraxial raytracing  Matrix  Skew ray
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号