首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microwave magnetic field effects on high-power microwave windowbreakdown
Authors:Hemmert  D Neuber  AA Dickens  J Krompholz  H Hatfield  LL Kristiansen  M
Institution:Dept. of Electr. Eng. & Phys., Texas Tech. Univ., Lubbock, TX;
Abstract:Microwave window breakdown in vacuum is investigated for an idealized geometry, where a dielectric slab is located in the center of a rectangular waveguide with its normal parallel to the microwave direction of propagation. An S-band resonant ring with a frequency of 2.85 GHz and a power of 60 MW is used. With field enhancement tips at the edges of the dielectric slab, the threshold power for breakdown is observed to be dependent on the direction of the microwaves; i.e., it is approximately 20% higher for the downstream side of the slab than it is for the upstream side. Simple trajectory calculations of secondary electrons in an RF field show a significant forward motion of electrons parallel to the direction of microwave propagation. Electrons participating in a saturated secondary avalanche on the upstream side are driven into the surface, and electrons on the downstream side are driven off the surface, because of the influence of the microwave magnetic field. In agreement with the standard model of dielectric surface flashover for dc conditions (saturated avalanche and electron-induced outgassing), the corresponding change in the surface charge density is expected to be proportional to the applied breakdown threshold electric field parallel to the surface
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号