首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A sapphire fibre thermal probe based on fast Fourier transform and phase-lock loop
Authors:Wang Yu-Tian  Wang Dong-Sheng  Ge Wen-Qian and Cui Li-Chao
Institution:Department of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract:A sapphire fibre thermal probe with Cr3+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.
Keywords:fluorescence thermometer  fast Fourier transform  phase-lock loop  sapphire optical fibre
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号