首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancing the performance of thin film CdS/PbS photovoltaic solar cells
Authors:HA Mohamed
Institution:1. Faculty of Science, Physics Department, Sohag University, 82524 Sohag, Egypt;2. Physics Department, Teachers College, King Saud University, 11148 Riyadh, Kingdom of Saudi Arabiahussein_abdelhafez2000@yahoo.com
Abstract:This work investigates dependence of the short-circuit current density, open-circuit voltage, fill factor and efficiency of a thin film CdS/PbS solar cell on thickness of transparent conductive oxide (TCO) layer, thickness of window layer (CdS), concentration of uncompensated acceptors (width of space-charge region), carrier lifetime in PbS and the reflectivity from metallic back contact. The effect of optical losses, front and rear recombination losses as well as the recombination losses on space-charge region are also considered in this study. As a result, by thinning the front contact layer indium tin oxide from 400 to 100 nm and window layer (CdS) from 200 to 100 nm it is possible to reduce the optical losses from 32 to 20%. The effect of electron lifetime on the internal and external quantum efficiency can be neglected at high width of the space-charge region. The maximum current density of 18.4 mA/cm2 is achieved at wide space-charge region (concentration of uncompensated acceptors = 1015 cm?3) and the longest lifetime (τn = 10?6 s) where the optical and recombination losses are about 55%. The maximum efficiency of 5.17%, maximum open-circuit voltage of 417 mV and approximately fixed fill factor of 74% are yielded at optimum conditions such as: electron lifetime = 10?6 s; concentration of uncompensated acceptors = 1016 cm?3; thickness of TCO = 100 nm; thickness of CdS = 100 nm; velocity of surface and rear recombination = 107 cm/s and thickness of absorber layer = 3 μm. When the reflectance from the back contact is 100%, the cell parameters improve and the cell efficiency records a value of 6.1% under the above conditions.
Keywords:CdS/PbS thin film solar cell  optical losses  recombination losses  open-circuit voltage  cell efficiency
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号