首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic Excitations in Pyrrole: A Test Case for Determination of Chromophores in the Chromogenic Effects of Neurotoxic Hydrocarbons by Time-Dependent Density Functional Theory and Single-Excitation Configuration Interaction Methods
Authors:Chang-Guo ZhanDavid A Dixon
Institution:Theory, Modeling & Simulation, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K1-83, P.O. Box 999, Washington, Richland, 99352
Abstract:Time-dependent density functional theory (TD-DFT) and single-excitation configuration interaction (CIS) calculations on the electronic excitations in pyrrole have been performed to examine the reliability of these first-principles electronic structure methods in predicting electronic excitation spectraof pyrrole-containing compounds. Both the TD-DFT and CIS calculations led to satisfactory results when compared to available experimental data, particularly for low-lying excited states. The TD-DFT and CIS calculations provide lower and upper limits of the excitation energies, respectively, for low-lying singlet excited states. These results suggest that these methods can be used for the prediction of the excitation spectra, particularly the excitation energies for low-lying excited states, of chromophores responsible for the chromogenic effects of neurotoxic hydrocarbons, which are believed to be substituted pyrroles and their adducts with proteins. As an example of a practical application, the spectrum of the widely used 2,5-dimethylpyrrole has been calculated. It is shown that the 2,5-dimethylpyrrole molecule does not have an absorption in the region of the visible spectrum (400-700 nm), suggesting that the absorption observed at 530 nm and the color of 2,5-dimethylpyrrole is due to another species, probably a product of possible 2,5-dimethylpyrrole autoxidation. This suggests that the conclusions from previously reported experimental studies of biochemical reactions of neurotoxic γ-diketones need to be reexamined in terms of the relationship of chromogenicity to neurotoxicity.
Keywords:time-dependent density functional theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号