首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Group-theoretical investigation of the tunneling splitting patterns of enolic acetylacetone
Authors:Yung-Ching Chou
Institution:Department of Natural Science, Taipei Municipal University of Education, No.1, Ai-Guo West Road, Taipei 10048, Taiwan
Abstract:Extensive experimental and theoretical studies for enolic acetylacetone have been presented in the literature, but studies of the tunneling splitting patterns are still lacking. In this work we adopt the Cs symmetry equilibrium structure and apply a group-theoretical formalism to study the tunneling splitting pattern of the ground vibrational level of enolic acetylacetone. Enolic acetylacetone has three large-amplitude motions, one intramolecular hydrogen transfer and two methyl torsions. Therefore, the Cs structure of enolic acetylacetone has 18 (3 × 3 × 2) equivalent equilibrium molecular frameworks, nine (3 × 3) of them are from the two methyl torsions, and two are from the intramolecular hydrogen transfer. Tunneling motions among the 18 equivalent molecular frameworks split the ground vibrational level into eight sublevels: A1, A4, E1, E2, E3, E4, G(1) and G(2). In enolic acetylacetone the intramolecular hydrogen transfer induces a rearrangement of the CC, CO single and double bonds, and then triggers two additional 60° internal rotations, one in each of the two methyl groups attached to the hydrogen-bonded malonaldehyde ring. This interaction further complicates the tunneling splitting patterns and increases the difficulty of spectral analysis. In this work the influence of the intramolecular hydrogen transfer on the energy order of the eight sublevels is determined by a group-theoretical formalism.
Keywords:Enolic acetylacetone  Tunneling splitting  Vibrational structure  Intramolecular hydrogen transfer  Methyl torsion  Large-amplitude motion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号