首页 | 本学科首页   官方微博 | 高级检索  
     检索      

应力发光材料Sr2SiO4∶Eu,Dy的光谱性质研究
引用本文:郑升辉,傅晓军,刘亚楠,付晓燕,张洪武.应力发光材料Sr2SiO4∶Eu,Dy的光谱性质研究[J].光谱学与光谱分析,2018,38(7):2032-2037.
作者姓名:郑升辉  傅晓军  刘亚楠  付晓燕  张洪武
作者单位:1. 厦门理工学院材料科学与工程学院,福建省功能材料及应用重点实验室,福建 厦门 361024
2. 南开大学环境科学与工程学院,天津 300071
3. 中国科学院城市环境研究所,福建 厦门 361024
4. 中海石油(中国)有限公司曹妃甸作业公司,天津 300459
基金项目:福建省科技厅国际合作重点项目(2018I0018),2017年度福建省高校新世纪优秀人才项目,国家自然科学基金项目(51102201)资助
摘    要:采用高温固相法制备一系列Sr2SiO4∶Eu0.01, Dyx(x=0.000 1, 0.002 5, 0.005, 0.01)应力发光材料,研究了不同掺杂浓度下,Sr2SiO4∶Eu, Dy的光致发光和应力发光性质。研究结果表明在掺杂Dy3+浓度较低时,样品同时存在αβ两种相,当掺杂Dy3+浓度增加时,则出现βα的相转变。由于Eu2+占据Sr2+格位的不同,样品在蓝光区486 nm(Sr1)和绿光区530 nm(Sr2)有两个峰存在。而应力发光光谱与余辉光谱类似,均只呈现出530 nm的发光,这说明二者的发光来源于占据Sr2格位的Eu2+,都是通过改变陷阱的浓度实现发光性能的变化,但Sr2SiO4∶Eu, Dy的应力发光强度的变化还与其结构改变有关。同时,Sr2SiO4∶Eu, Dy应力发光强度与所施加的力之间呈良好的线性关系,并且可用眼睛观察到明显的黄色应力发光,这为应力发光传感器准确检测物体所受应力提供依据。结合余辉、热释以及应力发光性质,推测Sr2SiO4∶Eu, Dy的应力发光机制应是压电产生的电致发光。

关 键 词:Sr2SiO4∶Eu    Dy  长余辉发光  应力发光材料  格位选择  
收稿时间:2017-08-30

Spectrum Properties of Mechanoluminescent Materials Sr2SiO4∶Eu,Dy
ZHENG Sheng-hui,FU Xiao-jun,LIU Ya-nan,FU Xiao-yan,ZHANG Hong-wu.Spectrum Properties of Mechanoluminescent Materials Sr2SiO4∶Eu,Dy[J].Spectroscopy and Spectral Analysis,2018,38(7):2032-2037.
Authors:ZHENG Sheng-hui  FU Xiao-jun  LIU Ya-nan  FU Xiao-yan  ZHANG Hong-wu
Institution:1. Xiamen University of Technology, Key Laboratory of Functional Materials and Applications of Fujian Province, Xiamen 361024, China 2. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China 3. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361024, China 4. CNOOC China Limited CFD Operating Company, Tianjin 300459, China
Abstract:The mechanoluminescence (ML) materials Sr2SiO4∶Eu, Dy were prepared by high temperature solid-state reaction method. The luminescent and mechanoluminescent properties of Sr2SiO4∶Eu, Dy with differentDy3+ concentrations have been investigated. The results showed that α and β phases of Sr2SiO4 co-existed for the low doped content of Dy3+. When the doped Dy3+ concentration increased, the β phase transited into α phase gradually. Since the Eu2+ ions occupied different Sr sites, the samples presented both blue emission at 486 nm (Sr1) and green emission at 530 nm (Sr2). However, the mechanoluminescent (ML) and afterglow spectra were consistent in the emission at 530 nm, which indicated that both emissions originated from Eu2+ transition located at Sr2 sites. Comparing thechange of mechanoluminescent (ML) and afterglow intensity, we can conclude that the changes of mechanoluminescence performance are not only related to the traps but also related to its structural. At the same time, the ML intensity of Sr2SiO4∶Eu, Dy increased with the increase of mechanical load and the ML images of Sr2SiO4∶Eu, Dy can be observed by naked eyes, which suggested this phosphor can be applied as potential sensors to detect stress. Furthermore, combined with afterglow, thermoluminescence and ML properties, it can be inferred thatthe origin of ML is piezoelectricity-induced electroluminescence, that is, piezoelectricity impelled the trapped electrons from the traps and produce ML.
Keywords:Sr2SiO4∶Eu  Dy  Persistent luminescence  Mechanoluminescent materials  Site selective spectrum  
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号