首页 | 本学科首页   官方微博 | 高级检索  
     检索      

拉曼光谱的16种多环芳烃(PAHs)特征振动光谱辨识
引用本文:曾娅玲,姜龙,蔡啸宇,李鱼.拉曼光谱的16种多环芳烃(PAHs)特征振动光谱辨识[J].光谱学与光谱分析,2014,34(11):2999-3004.
作者姓名:曾娅玲  姜龙  蔡啸宇  李鱼
作者单位:华北电力大学资源与环境研究院,华北电力大学区域能源系统优化教育部重点实验室,北京 102206
基金项目:“十一五”科技支撑项目,2013中央高校基本科研业务专项资金资助项目
摘    要:借助密度泛函理论中B3LYP/6-311++G(d, p)方法对美国EPA优先控制污染物中的16种多环芳烃(PAHs):萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并a]蒽、稠二萘、苯并b]荧蒽、苯并k]荧蒽、苯并a]芘、二苯并(a, h)蒽、二苯并g, h, i]芘以及茚苯(1, 2, 3-cd)芘进行结构优化,并计算拉曼光谱振动频率和去偏振度,在此基础上辨识多环芳烃的拉曼特征光谱。研究显示,16种PAHs的拉曼振动主要分布在3个频区:200~1 000 cm-1(指纹区)、1 000~1 700和3 000~3 200 cm-1(基团频率区),3个频区主要振动归属分别为环变形(ring def),碳碳伸缩(CCStr)、碳氢摇摆(CHw)及其耦合振动(CCStrCCw),碳氢伸缩(CHStr)。进一步分析显示,指纹区16种PAHs的去偏振度随苯环变形振动对称性增强而降低,在该频区去偏振度最小的频移处苯环呼吸振动的对称性最强,指纹区的峰强也在此处出现最大值。任意PAHs在指纹区的最强峰之间的波数差较大,在显微拉曼光谱的可分辨范围内,因而利用指纹区的去偏振度和最强峰可将16种PAHs逐一识别。烷烃、烯烃、炔烃、醇类和酚类、脂肪醚、芳基烷基醚、醛类、酮类、羧酸、酯类、胺类、腈类、酰胺类、酸酐、芳烃的振动频率和峰强分布不完全一致,利用PAHs与这几类物质拉曼频率和峰强分布的差异可以逐一排出干扰。

关 键 词:多环芳烃  拉曼振动归属  拉曼特征光谱识别  指纹区  去偏振度    
收稿时间:2013-11-14

Identification of the Characteristic Vibrations for 16 PAHs Based on Raman Spectrum
ZENG Ya-ling,JIANG Long,CAI Xiao-yu,LI Yu.Identification of the Characteristic Vibrations for 16 PAHs Based on Raman Spectrum[J].Spectroscopy and Spectral Analysis,2014,34(11):2999-3004.
Authors:ZENG Ya-ling  JIANG Long  CAI Xiao-yu  LI Yu
Institution:Resources and Environmental Research Academy, North China Electric Power University, Ministry of Education Key Laboratory of Regional Energy Systems Optimization, North China Electric Power University, Beijing 102206, China
Abstract:In the present paper, by means of density functional theory in B3LYP/6-311++G(d, p) method, 16 kinds of pollutants, i.e. polycyclic aromatic hydrocarbons (PAHs): naphthalene (Nap), acenaphthylene (AcPy), acenaphthene (Acp), fluorene (Flu), phenanthrene (PA), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr), benzo a] anthracene (BaA), fused two naphthalene (CHR), benzo b] fluoranthene (BbF), benzo k] fluoranthene (BkF), benzo a] pyrene (BaP), dibenzo (a, h) anthracene (DahA), dibenzo g, h, i] pyrene (BghiP) and indene benzene (1, 2, 3-cd) pyrene (IcdP) among the U.S. EPA priority pollutants were selected, whose structures were optimized and Raman vibrational frequencies and depolarization were calculated. The structure, Raman vibrational frequencies and depolarization were basis of identification of PAHs. Studies have shown that Raman vibrations of 16 PAHs are mainly distributed in three frequency regions: 200~1 000 cm-1 (fingerprint region), 1 000~1 700 cm-1 and 3 000~3 200 cm-1 (group frequency region), corresponding vibrations were assigned to ring deformation (ring def), C—C stretching (CCStr), C—H wiggle (CHw) and of these two patterns (CCStrCCw), and C—H stretching (CHStr). Further analysis showed that in fingerprint region the depolarization of 16 PAHs was reduced with the symmetry of benzene deformation vibration enhanced. At the point of minimum depolarization, symmetry and Raman peak of benzene ring breathing vibration were found strongest. At the minimum differential wave number the strongest peak in fingerprint region was distinguishable by micro-Raman spectroscopy. Therefore, 16 PAHs can be individually identified by depolarization and the strongest peak in fringerprint region. Vibration frequencies and peak intensity distribution of alkanes (Akn), olefin (Oe), alkyne (Aye), alcohols and phenols (Aap), aliphatic ether (Ape), arylalkyl ether (Aae), aldehydes (Ahd), ketones (Ktn ), carboxylic acid (Cba), esters (Etr), amines (Aie), nitriles (Nte), amides (Aid), acid anhydride (Ahr), aromatic hydrocarbons (Ahc) were not completely consistent with each other, and interference can be discharged by the differences of frequency and peak intensity distribution.
Keywords:Polycyclic aromatic hydrocarbon  Vibration assignment of Raman spectrum  Raman spectrum identification  Finger-print region  Depolarization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号