首页 | 本学科首页   官方微博 | 高级检索  
     检索      

炸药爆轰合成纳米金刚石的拉曼光谱和红外光谱研究
引用本文:文潮,金志浩,刘晓新,李迅,关锦清,孙德玉,林英睿,唐仕英,周刚,林俊德.炸药爆轰合成纳米金刚石的拉曼光谱和红外光谱研究[J].光谱学与光谱分析,2005,25(5):681-684.
作者姓名:文潮  金志浩  刘晓新  李迅  关锦清  孙德玉  林英睿  唐仕英  周刚  林俊德
作者单位:西安交通大学金属材料强度国家重点实验室,陕西,西安,710049;西北核技术研究所,陕西,西安,710024;西安交通大学金属材料强度国家重点实验室,陕西,西安,710049;西北核技术研究所,陕西,西安,710024
基金项目:国家“973”计划(G2000026403)资助项目
摘    要:用负氧平衡炸药爆轰法合成纳米金刚石,并用粉末X射线衍射(XRD)仪、激光Raman光谱仪和红外光谱仪等分析仪器对其结构进行表征。XRD结果表明,纳米金刚石为立方结构,由于其内部结构的高密度缺陷、杂质原子的夹杂使谱线偏离,晶格常数比静压合成的大颗粒金刚石大0.72%。由于金刚石晶粒细小,Raman光谱特征峰产生宽化,并且向小波数方向偏移了3cm^-1,此外在纳米金刚石中还含有极少量的石墨。红外光谱测试结果中,31422cm^-1吸收峰为O-H伸缩振动峰;在1634cm^-1出现了H2O的弯曲振动峰,表明在纳米金刚石样品粉末中含有水分;2930和2857cm^-1是CH2的反对称和对称伸缩振动吸收峰;2971cm^-1是CH3的反对称伸缩振动吸收峰,说明样品中存在极少量的碳氢化合物;1788cm^-1吸收峰为C=O伸缩振动吸收峰。文章从纳米金刚石的生成机理上分析了产生这些峰位的原因,结果表明纳米金刚石属于Ⅰ型金刚石,在它之中含有IaA型和Ib型金刚石,IaA型金刚石的含量比Ib型金刚石多。

关 键 词:纳米金刚石  拉曼光谱  红外光谱
文章编号:1000-0593(2005)05-0681-04
修稿时间:2003年7月5日

Studies on Nano-Diamond Prepared by Explosive Detonation by Raman and Infrared Spectroscopy
WEN Chao,JIN Zhi-hao,LIU Xiao-xin,LI Xun,GUAN Jin-qing,SUN De-yu,LIN Ying-rui,TANG Shi-ying,ZHOU Gang,LIN Jun-de.Studies on Nano-Diamond Prepared by Explosive Detonation by Raman and Infrared Spectroscopy[J].Spectroscopy and Spectral Analysis,2005,25(5):681-684.
Authors:WEN Chao  JIN Zhi-hao  LIU Xiao-xin  LI Xun  GUAN Jin-qing  SUN De-yu  LIN Ying-rui  TANG Shi-ying  ZHOU Gang  LIN Jun-de
Institution:State Key Laboratory of Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
Abstract:Nano-diamond was synthesized by TNT/RDX explosives detonation in a steel chamber and characterized by X-ray diffraction (XRD), laser Raman spectroscopy, and infraredspectroscopy. XRD results indicate that nano-diamond has cubic diamond structure. The parameter of unit cell of nano-diamond is 0.359 23 nm and is 0.72% larger than that of the bulk diamond. The high-density defects and other impurity atoms in the nano-diamond structure may lead to the large lattice constant. The examination results of Raman spectra show that the Raman band is broader and shifts to l ow frequency by 3 cm(-1), because the size of nano-diamond reaches nanometer order. There is little graphite in the nano-diamond. There are two peaks in FTIR of the nano-diamond, which are characteristic peaks of diamond at 1 262 and 1 134 cm(-1). Besides these two peaks, there are six peaks at 3 422, 1 643, 2 971, 2 930, 2 857 and 1 788 cm(-1) respectively. The FTIR bands at 2 930 and 2 857 cm(-1) are the antisymmetrical and symmetrical stretch vibration absorption spectra of CH2 respectively. The 3 422 cm(-1) is the stretch vibration absorption peak of O-H. The 1 634 cm(-1) confirms that there are H2O in the nano-diamond. The 2 971 cm(-1) is the antisymmetrical stretch vibration absorption peak of CH3. The 1 788 cm(-1) is the stretch vibration absorption peak of C=O. These indicate that there are H and O elements in the nano-diamond. From the mechanism of the nano-diamond, the authors discuss the reason for the vibration absorption peaks of O-H, CH2, CH3, and C=O, existing in the FTIR of the nano-diamond.
Keywords:Nano-diamond  Raman spectroscopy  Infrared spectroscopy
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号