首页 | 本学科首页   官方微博 | 高级检索  
     检索      

SPXY样本划分法及蒙特卡罗交叉验证结合近红外光谱用于橘叶中橙皮苷的含量测定
引用本文:展晓日,朱向荣,史新元,张卓勇,乔延江.SPXY样本划分法及蒙特卡罗交叉验证结合近红外光谱用于橘叶中橙皮苷的含量测定[J].光谱学与光谱分析,2009,29(4):964-968.
作者姓名:展晓日  朱向荣  史新元  张卓勇  乔延江
作者单位:1. 北京中医药大学中药学院,北京,100102
2. 首都师范大学化学系,北京,100037
基金项目:北京市科技计划,北京市中药基础与新药研究重点实验室资助项目 
摘    要:在近红外光谱PLS定量模型的建立过程中训练集样本的选取和潜变量数的确定是十分重要的.因此,该研究以橘叶中橙皮苷的含量检测为例,分别比较了random sampling(RS),Kennard-Stone(KS),dupIex,sample set partitioning based on joint x-y distance(SPXY)四种训练集样本的选取方法对模型的影响,以及留一交互验证法和蒙特卡罗法对潜变量数确定的影响.结果表明,SPXY法选取的训练集建立的模型优于其他三种方法,蒙特卡罗法能够较好地确定模型的潜变量数并有效地减少过拟合风险,所建模型的交互验证均方根,预测均方根及预测集相关系数分别为0.768 1,0.736 9,0.975 2.

关 键 词:近红外光谱法  训练集选择  潜变量数  蒙特卡罗法
收稿时间:2007/11/16

Determination of Hesperidin in Tangerine Leaf by Near-Infrared Spectroscopy with SPXY Algorithm for Sample Subset Partitioning and Monte Carlo Cross Validation
ZHAN Xiao-ri,ZHU Xiang-rong,SHI Xin-yuan,ZHANG Zhuo-yong,QIAO Yan-jiang.Determination of Hesperidin in Tangerine Leaf by Near-Infrared Spectroscopy with SPXY Algorithm for Sample Subset Partitioning and Monte Carlo Cross Validation[J].Spectroscopy and Spectral Analysis,2009,29(4):964-968.
Authors:ZHAN Xiao-ri  ZHU Xiang-rong  SHI Xin-yuan  ZHANG Zhuo-yong  QIAO Yan-jiang
Institution:ZHAN Xiao-ri1,ZHU Xiang-rong2,SHI Xin-yuan1,ZHANG Zhuo-yong2,QIAO Yan-jiang1 1. School of Chinese Pharmacy,Beijing Univeresity of Chinese Medicine,Beijing 100102,China 2. Department of Chemistry,Capital Normal University,Beijing 100037,China
Abstract:It is very crucial that a representative training set can be extracted from a pool of real samples. Moreover,it is difficult to determine the adapted number of latent variables in PLS regression. For comparison,PLS models were constructed by SPXY,as well as by using the random sampling,duplex and Kennard-Stone methods for selecting a representative subset during the measurement of tangerine leaf. In order to choose correctly the dimension of calibration model,two methods were applied,one of which is leave-o...
Keywords:SPXY
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号