首页 | 本学科首页   官方微博 | 高级检索  
     检索      

离子液体在大气压等离子体中稳定性研究
引用本文:王琳娜,程雅雯,刘柯,张秀玲.离子液体在大气压等离子体中稳定性研究[J].光谱学与光谱分析,2019,39(5):1372-1376.
作者姓名:王琳娜  程雅雯  刘柯  张秀玲
作者单位:大连大学物理科学与技术学院,大连大学信息工程学院,辽宁大连116622;大连大学物理科学与技术学院,大连大学信息工程学院,辽宁大连116622;大连大学物理科学与技术学院,大连大学信息工程学院,辽宁大连116622;大连大学物理科学与技术学院,大连大学信息工程学院,辽宁大连116622
基金项目:国家自然科学基金项目(21673026,21173028),大连大学创新创业训练项目(2016283)资助
摘    要:采用发射光谱、紫外可见吸收光谱、红外吸收光谱和核磁共振技术分析1-丁基-3-甲基咪唑硫酸氢盐(Bmim]HSO4), 1-丁基吡啶硫酸氢盐(HSO4)和1-丁基-3-甲基咪唑四氟化硼(Bmim]BF4)三种离子液体在大气压介质阻挡放电氩等离子体体系中的稳定性,并分别以上述三种离子液体为辅助液采用大气压介质阻挡放电等离子体技术制备TiO2,进一步研究三种离子液体在等离子体中的稳定性对所制备的TiO2晶相结构的影响。结果表明:向大气压介质阻挡放电氩等离子体中分别引入Bmim]HSO4,HSO4和Bmim]BF4离子液体后并未改变氩等离子体放电光谱谱峰的位置和数量且没有新的谱峰生成,但谱峰强度都明显降低,说明上述三种离子液体没有在等离子体区蒸发形成激发态物种;Bmim]HSO4和HSO4放电前后的红外吸收光谱基本一致,表明离子液体在放电后的化学键未发生改变;Bmim]HSO4和HSO4的紫外可见吸收光谱显示其吸收峰的位置和强度未发生改变,说明两种离子液体在等离子体作用后的结构是稳定的;Bmim]BF4放电前后的红外吸收光谱各个特征峰并无明显差异,但其紫外可见吸收光谱图谱吸收峰的位置却发生较大的偏移,进一步对放电前后的Bmim]BF4离子液体进行核磁共振分析,两者的1H NMR峰数相同,但放电后的离子液体化学位移向高位偏移大约0.2单位,说明其化学环境发生了变化,表明有部分Bmim]BF4结构发生改变。光谱和核磁共振技术分析表明离子液体Bmim]BF4在等离子体作用后结构发生了改变。采用三种离子液体辅助大气压介质阻挡放电等离子体技术制备TiO2样品的X-射线衍射分析结果表明 Bmim]HSO4和HSO4辅助制备的HSO4-TiO2和Bmim]HSO4-TiO2,谱图与锐钛矿相TiO2标准谱图基本一致,表明所制备的TiO2为纯锐钛矿型。而Bmim]BF4辅助制备的Bmim]BF4-TiO2在2θ=24.1°处的衍射峰向小角度偏移,2θ=48°处的衍射峰向大角度偏移,说明Bmim]BF4在辅助制备TiO2过程中,F进入TiO2的晶格,破坏了TiO2原子间的平衡状态,生成了F掺杂TiO2光催化材料。F掺杂TiO2光催化材料的形成也间接证明了离子液体Bmim]BF4在大气压等离子体中的不稳定性,此结果与核磁共振及紫外可见光的检测结果相一致。同时说明离子液体在等离子体的作用下对于纯锐钛矿晶格的形成和促进高活性掺杂型的光催化材料具有重要作用。为等离子体辅助离子液体制备高性能纳米材料提供重要的实验和理论依据。

关 键 词:等离子体  离子液体  介质阻挡放电  TiO2光催化材料
收稿时间:2018-03-30

The Stability of Ionic Liquids in DBD Plasma under Atmospheric Pressure
WANG Lin-na,CHENG Ya-wen,LIU Ke,ZHANG Xiu-ling.The Stability of Ionic Liquids in DBD Plasma under Atmospheric Pressure[J].Spectroscopy and Spectral Analysis,2019,39(5):1372-1376.
Authors:WANG Lin-na  CHENG Ya-wen  LIU Ke  ZHANG Xiu-ling
Institution:College of Physical Science and Technology, College of Information Engineering, Dalian University, Dalian 116622, China
Abstract:The stability of three Ionic liquids (Bmim]HSO4, HSO4 and Bmim]BF4) in DBD (Dielectric Barrier Discharge) Plasma under atmospheric pressure was investigated by using the OES (Optical Emission Spectrometer), UV-Vis (Ultraviolet and Visible Spectrophotometer), FTIR(Fourier Transform Infrared Spectroscopy) and NMR (Nuclear Magnetic Resonance) techniques. The influences of the stability of three Ionic liquids on the crystal phase structure of TiO2 were also studied by preparation of TiO2 with DBD plasma under atmospheric pressure using three kinds of Ionic liquids as assistant, respectively. The results showed that the position and quantity of argon argon plasma emission spectra peak did not change when three kinds of ionic liquid were introduced in DBD plasma. This indicated that the three ionic liquids of above did not evaporate in the plasma area and form excited species. However, the intensity argon emission peak decreased obviously. Both FTIR and UV-Vis spectrospecy of Bmim]HSO4 and HSO4 showed no difference before and after plasma discharge. This indicated that the Bmim]HSO4 and HSO4 were stable in plasma. There was no significant difference in the infrared spectra of Bmim]BF4 before and after plasma treatment. However, the position of the absorption peak in the UV-Vis spectra of Bmim]BF4 before and after plasma treatment had a large shift, and the analysis of 1H NMR showed that all the peaks shifted to right 0.2 units approximately. That indicated that the structure of some Bmim]BF4 changed in plasma. The XRD spectra of HSO4-TiO2 and Bmim]HSO4-TiO2, which were prepared by DBD plasma under atmospheric pressure using Bmim]HSO4 and HSO4 as assistant respectively, showed that all the diffraction peaks were the same as the standard spectra of anatase TiO2, and this indicated that HSO4-TiO2 and Bmim]HSO4-TiO2 were pure anatase. However, The XRD spectra ofBmim]BF4-TiO2, which were prepared by DBD plasma under atmospheric pressure using Bmim]BF4 as assistant, showed that the diffraction peaks at round 24.1° shifted to lower 2θ values, while the diffraction peaks at around 48.0° shifted toward higher 2θ values. The shift of the diffraction peak for Bmim]BF4-TiO2 samples indicated that lattice imperfection was formed due to F doping. The fluorine atoms entered into the lattice of TiO2, therefore breaking the equilibrium of original TiO2 atoms and varying the inter planar crystal spacing of anatase TiO2. This revealed that same of Bmim]BF4 were broken down in plasma. The formation of F doped TiO2 photocatalyst also indirectly proved the instability of ionic liquid Bmim]BF4 in atmospheric pressure plasma, and this results were the same with the analysis of UV-Vis and 1H NMR. The formation of F-doped TiO2 photocatalytic materials also indirectly proved the instability of ionic liquid Bmim]BF4 in atmospheric pressure plasma, which was consistent with the results of NMR and UV-Vis. It was also proved that ionic liquids play an important role in the formation of pure anatase crystals and the promotion of highly reactive photocatalysis materials under the action of plasma. It provides an important experimental and theoretical basis for the preparation of high performance nano-materials by plasma-assisted ionic liquids.
Keywords:Cold plasma  Ionic liquid  Dielectric barrier discharge  TiO2 photocatalytic material  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号