首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improving the Sound Absorption Properties of Flexible Polyurethane (PU) Foam using Nanofibers and Nanoparticles
Authors:Roohalah Hajizadeh  Ali Khavanin  Mohammad Barmar  Ahmad Jonidi Jafari  Somayeh Farhang Dehghan
Abstract:Polyurethane foam as the most well-known absorbent materials has a suitable absorption coefficient only within a limited frequency range. The aim of this study was to improve the sound absorption coefficient of flexible polyurethane (PU) foam within the range of various frequencies using clay nanoparticles, polyacrylonitrile nanofibers, and polyvinylidene fluoride nanofibers. The response surface method was used to determine the effect of addition of nanofi- bers of PAN and PVDF, addition of clay nanoparticles, absorbent thickness, and air gap on the sound absorption coefficient of flexible polyurethane foam (PU) across different frequency ranges. The absorption coefficient of the samples was measured using Impedance Tubes device. Nano clay at low thicknesses as well as polyacrylonitrile nanofibers and polyvinyl fluoride nanofibers at higher thicknesses had a greater positive effect on absorption coefficient. The mean sound absorption coefficient in the composite with the highest absorption coeffi- cient at middle and high frequencies was 0.798 and 0.75, respectively. In comparison with pure polyurethane foam with the same thickness and air gap, these values were 2.22 times at the middle frequencies and 1.47 times at high frequencies, respectively. Surface porosity rose with increasing nano clay, but decreased with increasing polyacrylonitrile nanofibers and polyvinyl fluoride nanofibers. The results indicated that the absorption coefficient was elevated with increasing the thickness and air gap. This study suggests that the use of a combination of nanoparticles and nanofibers can enhance the acoustic properties of flexible polyurethane foam.
Keywords:Sound absorption coefficient  flexible polyurethane foam  nano clay  polyacrylonitrile nanofibers  polyvinyl fluoride nanofibers
点击此处可从《声与振动》浏览原始摘要信息
点击此处可从《声与振动》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号