首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Disorder driven roughening transitions of elastic manifolds and periodic elastic media
Authors:T Emig  T Nattermann
Institution:Institut für Theoretische Physik, Universit?t zu K?ln, Zülpicher Strasse 77, 50937 K?ln, Germany, DE
Abstract:The simultaneous effect of both disorder and crystal-lattice pinning on the equilibrium behavior of oriented elastic objects is studied using scaling arguments and a functional renormalization group technique. Our analysis applies to elastic manifolds, e.g., interfaces, as well as to periodic elastic media, e.g., charge-density waves or flux-line lattices. The competition between both pinning mechanisms leads to a continuous, disorder driven roughening transition between a flat state where the mean relative displacement saturates on large scales and a rough state with diverging relative displacement. The transition can be approached by changing the impurity concentration or, indirectly, by tuning the temperature since the pinning strengths of the random and crystal potential have in general a different temperature dependence. For D dimensional elastic manifolds interacting with either random-field or random-bond disorder a transition exists for 2<D<4, and the critical exponents are obtained to lowest order in . At the transition, the manifolds show a superuniversal logarithmic roughness. Dipolar interactions render lattice effects relevant also in the physical case of D=2. For periodic elastic media, a roughening transition exists only if the ratio p of the periodicities of the medium and the crystal lattice exceeds the critical value . For p<p c the medium is always flat. Critical exponents are calculated in a double expansion in and and fulfill the scaling relations of random field models. Received 28 August 1998
Keywords:PACS  68  35  Ct Interface structure and roughness - 71  45  Lr Charge-density-wave systems - 64  70  Rh Commensurate-incommensurate          transitions - 68  35  Rh Phase transitions and critical phenomena - 05  20  -y Statistical mechanics - 74  60  Ge Flux pinning            flux creep  and flux-line lattice dynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号