首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mineralogical analysis of auriferous ores from the El Diamante mine, Colombia
Authors:Humberto Bustos Rodriguez  Dagoberto Oyola Lozano  Yebrayl A Rojas Martínez  Germán A Pérez Alcázar  Stefan Flege  Adam G Balogh  Louis J Cabri  Michael Tubrett
Institution:1. Departamento de Física, Universidad del Tolima, A. A. 546, Ibagué, Colombia
2. Departamento de Física, Universidad del Valle, A. A. 25360, Cali, Colombia
3. Institute of Materials Science, Darmstadt University of Technology, Darmstadt, Germany
4. Cabri Consulting Inc., Ottawa, ON, Canada
5. Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
Abstract:X-ray diffraction (XRD), Mössbauer spectrometry (MS), secondary ions mass spectroscopy (SIMS) and laser-ablation microprobe–inductively coupled plasma–mass spectrometry (LAM–ICP–MS) were used to study mineral samples of Colombian auriferous ores collected from the “El Diamante” mine, located in the municipality of Guachavez-Nariño, in Colombia. The samples were prepared as polished thin sections and polished sections. From XRD data, quartz, sphalerite and pyrite were detected and their respective cell parameters were estimated. From MS analyses, pyrite, arsenopyrite and chalcopyrite were identified; their respective hyperfine parameters and respective texture were deduced. Multiple regions of approximately 200 × 200 μm in each sample were analyzed with SIMS; the occurrence of “invisible gold” associated mainly with pyrite and secondarily with arsenopyrite could thus be assigned. It was also found that pyrite is of the arsenious type. Spots from 30 to 40 μm in diameter were analyzed with LAM–ICP–MS for pyrite, arsenopyrite and sphalerite; Au is “homogeneously” distributed inside the structure of the arsenious pyrite and the arsenopyrite (not as inclusions); the chemical composition indicates similarities of this “invisible gold”, forming a solid solution with arsenious pyrite and arsenopyrite. One hundred nineteen and 62 ppm of ‘invisible gold’ was quantified in 21 spots analyzed on pyrite and in 14 spots on arsenopyrite, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号