首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pressure–temperature studies on conductivity of TlX(X=Cl,Br,I) compounds:: I: phase diagram. II: ionic mobility
Authors:Richard A Secco  Etalo A Secco  Qi Chen  
Institution:

a Department of Earth Sciences, University of Western Ontario, London, ON, Canada N6A 5B7

b Department of Chemistry, St. Francis Xavier University, Antigonish, NS, Canada B2G 2W5

Abstract:We have measured the conductivity σ of TlX(X=Cl, Br, I) compounds up to 5.3 GPa and between 300–823 K. The σT dependence for all compounds can be divided into three distinct regions: (i) low temperature (LT), <400 K, with unusual negative σT dependence, (ii) intermediate temperature (IT), 400<650 K, with positive σT dependence and (iii) high temperature (HT), T>650 K, with positive σT dependence. The σT isobars were used to construct the TP solid phase diagram for each compound. The LT region data indicate a new meta-stable phase in the 1.0–3.5 GPa range. The LT→IT transition is characterized by an inverse σT dependence followed by normal Arrhenius behavior up to and including the HT region. The extrapolation to 1 atm of the P-dependent boundary between IT and HT regions above 3 GPa for each compound in the PT plot yields a value close to its respective normal (1 atm) Tmelt suggesting a solid order–disorder transition type paralleling greek small letter alpha-AgI behavior. The abrupt drop in conductivity in the LT region for P between 2.5–4.1 GPa of all compounds is at variance with the Arrhenius behavior observed for unperturbed ion migration implying the appearance of a second factor overriding the Arrhenius temperature dependence. Normal Arrhenius σT dependence prevails in both IT and HT regions with Qc values of 85–100 kJ mol−1 and 50–75 kJ mol−1, respectively. The higher conductivities at 0.4 GPa for TlBr and TlI relative to their 1 atm data and the increasing σ with P are in strong contrast to the normal σ-P behavior of TlCl. The dependence of activation volume ΔV on T for TlCl, i.e. ΔV>0, shows abnormally high values with a maximum at 500 K for P<3.0 GPa but reasonable ΔV values appear above 3.0 GPa. The ΔVT dependence for both TlBr and TlI with ΔV<0 is incompatible with an ion transport mechanism suggesting an electronic conduction process and implying an ionic–metallic transition at higher pressures. These contrasting conductivity features are discussed and interpreted in terms of electronegativity differences and bonding character rather than structure.
Keywords:High pressure  Phase transition  Electrical conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号