首页 | 本学科首页   官方微博 | 高级检索  
     检索      

电容式RF MEMS开关自热效应的多物理场协同仿真北大核心CSCD
引用本文:高杨,李君儒.电容式RF MEMS开关自热效应的多物理场协同仿真北大核心CSCD[J].强激光与粒子束,2016,28(6):064108-45.
作者姓名:高杨  李君儒
作者单位:1.中国工程物理研究院 电子工程研究所, 四川 绵阳 621 900;
基金项目:国家自然科学基金项目;中国工程物理研究院超精密加工技术重点实验室基金项目;西南科技大学特殊环境机器人技术四川省重点实验室开放基金项目;重庆大学新型微纳器件与系统技术国防重点学科实验室访问学者基金项目
摘    要:随着信号输入功率的升高,电容式RF MEMS开关会发生自热效应使膜片变形,引起开关气隙高度的改变,导致开关驱动电压漂移,严重影响其可靠性。由于自热效应的失效机理涉及到复杂的多物理场耦合,因此提出了“电磁-热-应力”的多物理场协同仿真方法描述其失效模式,并分析其失效机理。首先利用HF-SS软件建立开关的电磁仿真模型,得到不同输入功率下膜片的耗散功率;再以此作为热源,利用ePhysics软件建立开关的热仿真模型,得到膜片上的温度分布;然后将温度梯度作为载荷,利用ePhysics软件建立开关的应力仿真模型,得到开关的形变行为;最后,根据膜片形变所致的气隙高度变化,得到驱动电压漂移的失效预测模型。以一种具有矩形膜片结构的典型电容式RFMEMS开关为例,利用该方法得到:矩形膜片表面电流密度主要分布在膜片的长边的边缘;温度沿膜片长边逐渐降低,且膜片中心处温度最高、锚点处温度最低;膜片的热应力变形呈马鞍面形,且最大形变点发生在膜片长边的边缘处,仿真还得到0~5 W输入功率下膜片的最大形变量;并拟合出了0~5W输入功率下的开关驱动电压-输入功率漂移曲线,该曲线具有线性特征并与文献实测数据极为吻合,由此证明了该方法的有效性。

关 键 词:射频微电子机械系统  电容式开关  自热效应  失效机理  多物理场  协同仿真
收稿时间:2015-10-22

Cooperative multi-physics simulation on self-heating effect of capacitive RF MEMS switch
Institution:1.Institute of Electronic Engineering,CAEP,Mianyang 621900,China;2.Skysilicon Corporation Limited,Chongqing 401331,China;3.State Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology,Chongqing University,Chongqing 400044,China
Abstract:The self-heating effect of the capacitive RF MEMS switch is caused by increasing incident power of the RF signal, which leads to deformation of the membrane. Thus, the air gap of the switch is changed. Eventually the drift of the actuation voltage of the switch is prompted, which seriously affect the reliability of the switch. Because the failure mechanisms of self-heating effect involves complex multi-physics coupling, the failure mechanisms are analysed and the failure modes are described by proposing the electromagnetic-thermo-mechanic multi-physics cooperative simulation method. Firstly, the dissipation power of the membrane under different incident power is got by constructing the electromagnetic simulation model of the switch in HFSS, which is taken as a heat source. Then the distribution of the surface temperature of the membrane is got by constructing the thermal simulation model of the switch in ePhysics, which is taken as a load. Next, the deformation behavior model of the switch is obtained by constructing the stress simulation model of the switch in ePhysics. At last, according to the change of the air gap caused by deformation, the failure prediction model of the drift of the actuation voltage is obtained. Taking a typical capacitive RF MEMS switch with rectangular membrane geometry for an instance, the distribution along the edge of the length of the surface current density of the membrane is got with this method. And the temperature gradually reduces along the edge of the length, with the highest temperature in the center and the lowest at the anchor. It is found that the maximum deformation point of the membrane appears on the edges of the long side. And the deformation presents a saddle surface. The linear relationship of the drift between the actuation voltage of the switch and the incident power (0-5 W) of the RF signal is fitted by getting maximum deformation value of the membrane under different temperature incident power (0-5 W). The effectiveness of the proposed method is proved by comparing with the measured data of the references.
Keywords:
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号