首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design and theoretical study of a polarization-insensitive multiband terahertz metamaterial bandpass filter
Institution:School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
Abstract:We report the design of a novel multiband metamaterial bandpass filter (BPF) in the terahertz (THz)-wave region. The designed BPF is composed of a metal-dielectric-metal sandwiched structure with three nested rings on the top surface and a cross structure on the bottom surface. Full-wave simulation results show that the designed BPF has three transmission peaks at frequencies of 0.42, 1.27, and 1.86 THz with transmission rates of-0.87,-1.85, and-1.83 dB, respectively. Multi-reflection interference theory is introduced to explain the transmission mechanism of the designed triple-band BPF. The theoretical transmission spectrum is in good agreement with the full-wave simulated results. The designed BPF can maintain a stable performance as the incident angle varies from 0° to 30° for both transverse electric and transverse magnetic polarizations of the incident wave. The designed BPF can be potentially used in THz devices due to its multiband transmissions, polarization insensitivity, and stable wide-angle response in the THz region.
Keywords:terahertz metamaterials  bandpass filter  full-wave simulation  multi-reflection interference theory  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号