首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modulation of electrical and optical properties of gallium-doped ZnO films by radio frequency magnetron sputtering
Authors:Liang Shuang  Mei Zeng-Xia  Du Xiao-Long
Institution:Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:Ga-doped ZnO (GZO) films are prepared on amorphous glass substrates at room temperature by radio frequency magnetron sputtering. The results reveal that the gallium doping efficiency, which will have an important influence on the electrical and optical properties of the film, can be governed greatly by the deposition pressure and film thickness. The position shifts of the ZnO (002) peaks in X-ray diffraction (XRD) measurements and the varied Hall mobility and carrier concentration confirms this result. The low Hall mobility is attributed to the grain boundary barrier scattering. The estimated height of barrier decreases with the increase of carrier concentration, and the trapping state density is nearly constant. According to defect formation energies and relevant chemical reactions, the photoluminescence (PL) peaks at 2.46 eV and 3.07 eV are attributed to oxygen vacancies and zinc vacancies, respectively. The substitution of more Ga atoms for Zn vacancies with the increase in film thickness is also confirmed by the PL spectrum. The obvious blueshift of the optical bandgap with an increase of carrier concentration is explained well by the Burstein-Moss (BM) effect. The bandgap difference between 3.18 eV and 3.37 eV, about 0.2 eV, is attributed to the metal-semiconductor transition.
Keywords:doping efficiency  Hall mobility  photoluminescence  Burstein-Moss effect
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号