首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonadiabatic dynamics of electron injection into organic molecules
Authors:Zhu Li-Ping  Qiu Yu  Tong Guo-Ping
Institution:Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract:We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su--Schrieffer--Heeger (SSH) model with a nonadiabatic dynamics method. It is found that match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of organic chains, which has great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown not always to lead to spontaneous electron transfer from electrodes to polymers.
Keywords:nonadiabatic dynamics  electron injection  organic molecule
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号