首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physical interpretation of Planck's constant based on the Maxwell theory
Institution:Macro-Science Group, Division of LIFS, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
Abstract:The discovery of the Planck relation is generally regarded as the starting point of quantum physics. Planck's constant h is now regarded as one of the most important universal constants. The physical nature of h, however, has not been well understood. It was originally suggested as a fitting constant to explain the black-body radiation. Although Planck had proposed a theoretical justification of h, he was never satisfied with that. To solve this outstanding problem, we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet. We find that the energy of the wave packet is indeed proportional to its oscillation frequency. This allows us to derive the value of Planck's constant. Furthermore, we show that the emission and transmission of a photon follows the all-or-none principle. The “strength” of the wave packet can be characterized by ζ, which represents the integrated strength of the vector potential along a transverse axis. We reason that ζ should have a fixed cut-off value for all photons. Our results suggest that a wave packet can behave like a particle. This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.
Keywords:Planck'  s constant  Maxwell'  s theory  de Broglie relation  uncertainty principle  wave packet  photon  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号