首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Particle captured by a field-modulating vortex through dielectrophoresis force
Institution:School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:In microfluidic technology, dielectrophoresis (DEP) is commonly used to manipulate particles. In this work, the fluid-particle interactions in a microfluidic system are investigated numerically by a finite difference method (FDM) for electric field distribution and a lattice Boltzmann method (LBM) for the fluid flow. In this system, efficient particle manipulation may be realized by combining DEP and field-modulating vortex. The influence of the density ($\rho_{\rm p}$), radius ($r$), and initial position of the particle in the $y$ direction ($y_{\rm p0}$), and the slip velocity ($u_{0}$) on the particle manipulation are studied systematically. It is found that compared with the particle without action of DEP force, the particle subjected to a DEP force may be captured by the vortex over a wider range of parameters. In the $y$ direction, as $\rho_{\rm p}$ or $r $ increases, the particle can be captured more easily by the vortex since it is subjected to a stronger DEP force. When $u_{0}$ is low, particle is more likely to be captured due to the vortex-particle interaction. Furthermore, the flow field around the particle is analyzed to explore the underlying mechanism. The results obtained in the present study may provide theoretical support for engineering applications of field-controlled vortices to manipulate particles.
Keywords:field-modulating vortex  dielectrophoresis  fluid—particle interactions  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号