首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Institution:1.State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;3.CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
Abstract:Superconducting nanowire single-photon detectors (SNSPDs) are typical switching devices capable of detecting single photons with almost 100% detection efficiency. However, they cannot determine the exact number of incident photons during a detection event. Multi-pixel SNSPDs employing multiple read-out channels can provide photon number resolvability (PNR), but they require increased cooling power and costly multi-channel electronic systems. In this work, a single-flux quantum (SFQ) circuit is employed, and PNR based on multi-pixel SNSPDs is successfully demonstrated. A multi-input magnetically coupled DC/SFQ converter (MMD2Q) circuit with a mutual inductance M is used to combine and record signals from a multi-pixel SNSPD device. The designed circuit is capable of discriminating the amplitude of the combined signals in accuracy of Φ0/M with Φ0 being a single magnetic flux quantum. By employing the MMD2Q circuit, the discrimination of up to 40 photons can be simulated. A 4-parallel-input MMD2Q circuit is fabricated, and a PNR of 3 is successfully demonstrated for an SNSPD array with one channel reserved for the functional verification. The results confirm that an MMD2Q circuit is an effective tool for implementing PNR with multi-pixel SNSPDs.
Keywords:superconducting nanowire  single-flux quantum circuit  photon number resolution  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号