首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Institution:1.School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;2.Innovation Center of Northwestern Polytechnical University in Chongqing, Chongqing 401135, China;3.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;4.Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
Abstract:L10-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe42Ni41.3Si8B4P4Cu0.7 amorphous alloy, and the L10-FeNi formation mechanism has been studied. It is found the L10-FeNi in annealed samples at 400 ℃ mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 60 ℃ lower than the measured onset temperature of the second stage with a 5 ℃/min heating rate. Annealing at 400 ℃ after fully crystallization still caused a slight increase of coercivity, which was probably contributed by the limited transformation from other high temperature crystalline phases towards L10 phase, or the removal of B from L10 lattice and improvement of the ordering quality of L10 phase due to the reduced temperature from 520 ℃ to 400 ℃. The first stage of crystallization has hardly direct contribution to L10-FeNi formation. Ab initio simulations show that the addition of Si or Co in L10-FeNi has the effect of enhancing the thermal stability of L10 phase without seriously deteriorating its magnetic hardness. The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects. The approaches of synthesizing L10-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.
Keywords:L10-FeNi  hard magnetic materials  amorphous alloys  ab initio simulation  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号