首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Institution:1.School of Electrical and Electronic Engineering Department, North China Electric Power University, Beijing 102206, China;2.Institute of Applied Physics and Computational Mathematics, Beijing 100094 China
Abstract:It is known that ion-focused regime (IFR) can effectively suppress expansion of a relativistic electron beam (REB). Using the particle-in-cell Monte Carlo collision (PIC-MCC) method, we numerically investigate the propagation of an REB in neutral gas. The results demonstrate that the beam body is charge neutralization and a stable IFR can be established. As a result, the beam transverse dimensions and longitudinal velocities keep close to the initial parameters. We also calculate the charge and current neutralization factors of the REB. Combined with envelope equations, we obtain the variations of beam envelopes, which agree well with the PIC simulations. However, both the energy loss and instabilities of the REB may lead to a low transport efficiency during long-range propagation. It is proved that decreasing the initial pulse length of the REB can avoid the influence of electron avalanche. Using parts of REB pulses to build a long-distance IFR in advance can improve the beam quality of subsequent pulses. Further, a long-distance IFR may contribute to the implementation of long-range propagation of the REB in space environment.
Keywords:ion-focused regime (IFR)  charge neutralization  electron avalanche  relativistic electron beam (REB)  particle-in-cell Monte Carlo collision (PIC-MCC)  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号