首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Institution:Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, &School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract:We present an efficient strategy, that is the co-substitution of Fe3+ and Ta5+ ions with large radius for Ti4+ ion, to enhance energy storage performance of Ba2Bi4Ti5O18 film. For the films co-doped with Fe3+ and Ta5+ ions, the maximum polarization under the same external electric field is improved because the radius of Fe3+ and Ta5+ ions is larger than that of Ti4+ ion. Moreover, due to the composition and chemical disorder, the relaxor properties are also slightly improved, which can not be achieved by the film doped with Fe3+ ions only. What is more, for the films doped with Fe3+ ion only, the leakage current density increases greatly due to the charge imbalance, resulting in a significant decrease in breakdown strength. It is worth mentioning that the breakdown strength of Fe3+ and Ta5+ ions co-doped film does not decrease due to the charge balance. Another important point is the recoverable energy storage density of the films co-doped with Fe3+ and Ta5+ ions has been greatly improved based on the fact that the maximum external electric field does not decrease and the maximum polarization under the same external electric field increases. On top of that, the hysteresis of the polarization has also been improved. Finally, the co-doped films with Fe3+ and Ta5+ ions have good frequency and temperature stability.
Keywords:Ba2Bi4Ti5O18 film  ferroelectrics  energy storage  co-doped  radius  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号