首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Configurational entropy-induced phase transition in spinel LiMn2O4
Institution:1.Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China;2.School of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
Abstract:The spinel-type LiMn$_{2}$O$_{4}$ is a promising candidate as cathode material for rechargeable Li-ion batteries due to its good thermal stability and safety. Experimentally, it is observed that in this compound there occur the structural phase transitions from cubic ($Fd\bar{3}m)$ to tetragonal ($I4_{1}/{amd}$) phase at slightly below room temperature. To understand the phase transition mechanism, we compare the Gibbs free energy between cubic phase and tetragonal phase by including the configurational entropy. Our results show that the configurational entropy contributes substantially to the stability of the cubic phase at room temperature due to the disordered Mn$^{3+}$/Mn$^{4+}$ distribution as well as the orientation of the Jahn-Teller elongation of the Mn$^{3+}$O$_{6}$ octahedron in the the spinel phase. Meanwhile, the phase transition temperature is predicted to be 267.8 K, which is comparable to the experimentally observed temperature. These results serve as a good complement to the experimental study, and are beneficial to the improving of the electrochemical performance of LiMn$_{2}$O$_{4}$ cathode.
Keywords:configurational entropy  LiMn2O4  phase transition  Jahn-Teller distortion  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号