首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Abstract:A depth behavioral understanding for each layer in perovskite solar cells(PSCs)and their interfacial interactions as a whole has been emerged for further enhancement in power conversion efficiency(PCE).Herein,NiO@Carbon was not only simulated as a hole transport layer but also as a counter electrode at the same time in the planar heterojunction based PSCs with the program wx AMPS(analysis of microelectronic and photonic structures)-1D.Simulation results revealed a high dependence of PCE on the effect of band offset between hole transport material(HTM)and perovskite layers.Meanwhile,the valence band offset(?E_v)of NiO-HTM was optimized to be -0.1 to -0.3 eV lower than that of the perovskite layer.Additionally,a barrier cliff was identified to significantly influence the hole extraction at the HTM/absorber interface.Conversely,the ?E_v between the active material and NiO@Carbon-HTM was derived to be -0.15 to 0.15 eV with an enhanced efficiency from 15% to 16%.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号