首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskite ABX_3 from first-principles study
引用本文:陈清源,黄杨,黄鹏儒,马泰,曹超,何垚.Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskite ABX_3 from first-principles study[J].中国物理 B,2016,25(2):27104-027104.
作者姓名:陈清源  黄杨  黄鹏儒  马泰  曹超  何垚
作者单位:1. Department of Physics, Yunnan University, Kunming 650091, China;2. Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
基金项目:Project supported by the National Natural Science Foundation of China (Grant Nos. 61366007, 11164032, and 61066005), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1080), the Basic Applied Research Foundation of Yunnan Province, China (Grant Nos. 2011CI003 and 2013FB007), and the Excellent Young Talents in Yunnan University, China.
摘    要:Organic–inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX_3(A = CH_3NH_3; B = Sn,Pb; X = Cl, Br, I) and provide the best absorber among ABX_3 when the organic framework A is CH_3NH_3 by first-principles calculations. The results reveal that the valence band maximum(VBM) of the ABX_3 is mainly composed of anion X p states and that conduction band minimum(CBM) of the ABX_3 is primarily composed of cation B p states. The bandgap of the ABX_3 decreases and the absorptive capacities of different wavelengths of light expand when reducing the size of the organic framework A, changing the B atom from Pb to Sn, and changing the X atom from Cl to Br to I. Finally, based on our calculations, it is discovered that CH_3NH_3 Sn I_3has the best optical properties and its light-adsorption range is the widest among all the ABX_3 compounds when A is CH_3NH_3. All these results indicate that the electronegativity difference between X and B plays a fundamental role in changing the energy gap and optical properties among ABX_3 compounds when A remains the same and that CH_3NH_3 Sn I_3 is a promising perovskite absorber in the high efficiency solar batteries among all the CH_3NH_3BX_3 compounds.

收稿时间:2015-08-27

Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic perovskite ABX3 from first-principles study
Institution:1. Department of Physics, Yunnan University, Kunming 650091, China;2. Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
Abstract:Organic-inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX3 (A =CH3NH3; B = Sn, Pb; X = Cl, Br, I) and provide the best absorber among ABX3 when the organic framework A is CH3NH3 by first-principles calculations. The results reveal that the valence band maximum (VBM) of the ABX3 is mainly composed of anion X p states and that conduction band minimum (CBM) of the ABX3 is primarily composed of cation B p states. The bandgap of the ABX3 decreases and the absorptive capacities of different wavelengths of light expand when reducing the size of the organic framework A, changing the B atom from Pb to Sn, and changing the X atom from Cl to Br to I. Finally, based on our calculations, it is discovered that CH3NH3SnI3 has the best optical properties and its light-adsorption range is the widest among all the ABX3 compounds when A is CH3NH3. All these results indicate that the electronegativity difference between X and B plays a fundamental role in changing the energy gap and optical properties among ABX3 compounds when A remains the same and that CH3NH3SnI3 is a promising perovskite absorber in the high efficiency solar batteries among all the CH3NH3BX3 compounds.
Keywords:ABX3  efficiency-enhancing mechanism of ABX3  optical and electronic properties  hybrid perovskite solar cells  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号