首页 | 本学科首页   官方微博 | 高级检索  
     检索      

下地幔温压下(Mg,Fe)SiO3钙钛矿的相稳定性——对冲击回收样品的微观分析
引用本文:张莉,龚自正,刘红,邓力维,薛学东,经福谦.下地幔温压下(Mg,Fe)SiO3钙钛矿的相稳定性——对冲击回收样品的微观分析[J].高压物理学报,2004,18(2):170-176.
作者姓名:张莉  龚自正  刘红  邓力维  薛学东  经福谦
作者单位:1. 西南交通大学物理研究所,四川成都,610031
2. 西南交通大学物理研究所,四川成都,610031;辽宁大学物理系,辽宁沈阳,110036
3. 西南交通大学物理研究所,四川成都,610031;中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳,621900
基金项目:国家自然科学基金重大项目(10299040)
摘    要: 在60~110 GPa冲击压力(估算温度为2 300~4 800 K)范围内进行了5发原始样品为(Mg0.92,Fe0.08)SiO3顽火辉石的冲击压缩回收实验,对回收样品进行的X射线衍射(XRD)和红外吸收光谱(IR)分析结果表明:(1)回收样品的主相均是单链状结构硅酸盐,而非钙钛矿结构;(2)回收样品中均未观察到氧化物SiO2和(Mg0.92,Fe0.08)O的XRD 和IR特征谱线;(3)回收样品的XRD、IR特征谱线变得简略,并发现了与原始样品有某些不同的特征谱线,随冲击压力增加,这种变化趋于明显;(4) 通过对比冲击压力在85 GPa以下和97 GPa以上回收样品的XRD、IR特征谱线,没有观察到明显的新谱线特征出现。结合先前的冲击Hugoniot状态方程实验数据分析,可以认为:在冲击压缩过程中样品处于钙钛矿结构,在冲击卸载过程中样品发生了由钙钛矿结构向单链状结构的逆转相变;特别是,在实验的温度压力范围内,不可能发生由(Mg0.92,Fe0.08)SiO3向SiO2和(Mg0.92,Fe0.08)O的化学分解相变,顽火辉石的高压相——钙钛矿结构是稳定的。回收样品和原始样品的谱线差异可能对应于高压加载或卸载过程引起的某种晶格畸变,而高压加载导致钙钛矿型顽火辉石晶格畸变的可能性更大。这一结果将对下地幔矿物学模型的建立和下地幔地震波探测结果的解释提供基础物理依据。

关 键 词:顽火辉石  冲击回收  XRD和IR微观分析  (Mg  Fe)SiO3  钙钛矿的相稳定性  下地幔
文章编号:1000-5773(2004)02-0170-07
收稿时间:2003-07-16;
修稿时间:2003年7月16日

Stability of (Mg,Fe)SiO3 -Perovskite at Lower Mantle Pressure and Temperature Conditions
ZHANG Li,GONG Zi-Zheng,LIU Hong.Stability of (Mg,Fe)SiO3 -Perovskite at Lower Mantle Pressure and Temperature Conditions[J].Chinese Journal of High Pressure Physics,2004,18(2):170-176.
Authors:ZHANG Li  GONG Zi-Zheng  LIU Hong
Institution:ZHANG Li~1,GONG Zi-Zheng~1,LIU Hong~
Abstract:Shock recovery experiments of (Mg0.92,Fe0.08)SiO3 enstatite were conducted at pressure range from 60 to 110 GPa (the corresponding temperature is estimated as 2 300~4 800 K). X-ray diffraction (XRD) and infrared absorption spectra (IR) of the recovered samples indicate that: (1) The main phase of recovered samples is single-chain structure enstatite, not the perovskite structure; (2) There is no evidence for the existence of oxides SiO2 and (Mg0.92,Fe0.08)O in the recovered samples; (3) After shock compression, some peaks different from original sample were found and these differences are getting more obvious with the increasing of pressure; (4) No obviously different peaks were found between the recovered samples below 85 GPa and those above 97 GPa, from the comparison of XRD and IR spectra among these samples. Combined with the former analysis of experiments of Hugoniot equation of state of enstatite, it was considered that enstatite transformed into perovskite structure under shock compression. The microanalysis requires retrogressive transformation of shocked samples during the process of pressure release. Especially, there is no possibility for the chemical decomposition reaction of (Mg0.92,Fe0.08)SiO3 to oxides SiO2 and (Mg0.92,Fe0.08)O occurring under shock compression, so the high-pressure phase of enstatite-perovskite structure remains stable at the experimental conditions. Meanwhile, we attribute the spectra difference between original sample and recovered samples to a crystal distortion under shock compression or release process and the loading process more probably resulted in such distortion. The results of this investigation provide basic physical evidence for the minerals composition model and the interpretation of seismic wave data for the lower mantle.
Keywords:enstatite  shock recovery  XRD and IR microanalysis  stability of (Mg  Fe)SiO_3-perovskite  lower mantle
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《高压物理学报》浏览原始摘要信息
点击此处可从《高压物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号