首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Estimation of ultrasound attenuation and dispersion using short time Fourier transform
Authors:Zhao B  Basir O A  Mittal G S
Institution:Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Abstract:Determination of the acoustic attenuation and dispersion has important applications in ultrasound tissue characterization and non-destructive material testing. Current signal processing methods Fourier transform of ultrasound signals to get the spectra of amplitude and phase to estimate respectively the attenuation and dispersion of a given medium. These methods are frequency domain method and obsessed with ambiguity issue in the phase unwrapping calculation. Conventional ultrasound velocity measuring method detects the time of arrival of a pulse (or echo) signal, which is a time domain method to compute group velocity (not phase velocity). This paper presents a novel approach based on the short time Fourier transform (STFT)--a time-frequency analysis, to estimate the ultrasonic dispersion and attenuation. Only the amplitude information of the pulse-signal spectra is used. Based on the time-frequency presentation, the attenuation coefficient of the signal is obtained by computing the amplitude decay of pulse spectrum in time domain, while phase velocities are obtained based on the "time-of-flight" (TOF) of the mono frequency component of the pulse signals. As a result, we eliminate the ambiguity issue in phase angle calculation. Furthermore, the proposed method makes the phase velocity pedagogically intuitive for novice users. The paper presents experiments to evaluate demonstrate the performance of the proposed method.
Keywords:43  60  +d  43  35  Bf
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号