首页 | 本学科首页   官方微博 | 高级检索  
     检索      

超快脉冲激光辐照金属薄膜热-力效应的模拟研究
引用本文:王德飞,齐文宗,郭春凤.超快脉冲激光辐照金属薄膜热-力效应的模拟研究[J].光子学报,2008,37(11):2172-2176.
作者姓名:王德飞  齐文宗  郭春凤
作者单位:四川大学,电子信息学院,成都,610064
摘    要:基于双曲双温两步热传导和热电子崩力模型,考虑到超快脉冲激光辐照金属薄膜材料过程中的热-力耦合效应,得到了完全耦合的、非线性的超快热弹性模型.运用具有人工粘性和自适应步长的有限差分算法,以脉宽为100 fs的脉冲激光辐照200 nm厚金膜为例,对薄膜体内的电子-晶格温度及温度梯度、热应力和电子热流进行了数值模拟研究.结果表明:脉冲辐照早期为明显的非平衡加热阶段,同时形成较大的热电子崩力;电子热流出现双峰现象;超快加热引起的热应力是导致薄膜力学损伤的主要原因.

关 键 词:超快脉冲激光  金属薄膜  超快热弹  热应力  非热平衡
收稿时间:2007-12-20
修稿时间:2008-04-03

Simulation Study of Thermal and Mechanical Effect on Metal Film Irradiated by Ultra-fast Laser Pulse
WANG De-fei,QI Wen-zong,GUO Chun-feng.Simulation Study of Thermal and Mechanical Effect on Metal Film Irradiated by Ultra-fast Laser Pulse[J].Acta Photonica Sinica,2008,37(11):2172-2176.
Authors:WANG De-fei  QI Wen-zong  GUO Chun-feng
Institution:WANG De-fei,QI Wen-zong,GUO Chun-feng(College of Electronics , Information Engineering,Sichuan University,Chengdu 610064,China)
Abstract:Based on the dual-temperature hyperbolic two-step heat conduction and hot- electron blast models,a new set of fully coupled and nonlinear ultra-fast thermo-elasticity model was derived to investigate the thermo-mechanical coupling effect of metal films caused by ultra-fast pulsed laser.Taking the 200nm gold film irradiated by a 100fs laser pulse as a typical example,thermal stress development in the lattice sub-system,temperature along with temperature gradient and electron heat flux were modeled by using artificial viscosity and the adaptive step finite-difference algorithm.It is shown that the early period of laser heating is a non-equilibrium process and forming large hot-electron blast force.It is also found that electron heat flow presents bimodal phenomenon.In addition,thermal stress induced by ultra-fast laser heating could be the main reason for mechanical damage.
Keywords:Ultra-fast pulse Laser  Metal films  Ultra-fast thermo-elasticity  Thermal stress  Non-thermal equilibrium
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光子学报》浏览原始摘要信息
点击此处可从《光子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号