首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physics of fluctuation processes in downscaled silicon MOSFETs
Authors:N B Lukyanchikova  E Simoen and C Claeys
Institution:1.V. E. Lashkarev Institute for Physics of Semiconductors of the National Academy of Sciences of Ukraine,Kiev,Ukraine;2.Interuniversity Microelectronics Center,Leuven,Belgium;3.Catholic University of Leuven,Leuven,Belgium
Abstract:Physical mechanics of fluctuation processes in advanced submicron and decananometer MOSFETs (metal-oxide-semiconductor field-effect transistors) including the ultra-thin film SOI (siliconon-insulator) devices using strained silicon films are reviewed. The review is substantially based on the results obtained by the authors. It is shown that the following drastic changes occur in the nature and parameters of noise in such devices as a result of their downscaling when the gate oxide thickness and the channel length and width are decreased, the SOI substrates are used, the silicon film thickness is reduced, the film doping level is varied, the strained silicon films are employed, etc. Firstly, the Lorentzian components can appear in the current noise spectra. Those components are due to (i) electron tunneling from the valence band through the gate oxide in the SOI MOSFETs of a sufficiently thin gate oxide (LKE-Lorentzians); (ii) Nyquist fluctuations generated in the source and drain regions near the back Si/SiO2 interface in the SOI MOSFETs (BGI Lorentzians); (iii) electron exchange between the channel and some single trap in the gate oxide of the transistors with sufficiently small length and width of the channel (RTS Lorentzians). Secondly, the 1/f-noise level can increase due to (i) the appearance of recombination processes near the Si/SiO2 interface activated by the currents of electron tunneling from the valence band; (ii) an increase in the trap density in the gate oxide of the devices fabricated on the biaxially tensile-strained silicon films; (iii) the contribution of the 1/f fluctuations of the current flowing through the gate oxide as a result of electron tunneling from the conduction band. At the same time, the 1/f-noise level may decrease due to a decrease in the trap density in the gate oxide of the transistors fabricated on the uniaxially tensile-strained silicon films. Moreover, a 1/f 1.7 component may appear in the noise spectra for the transistors of a sufficiently thin gate oxide, whose component is due to charge fluctuations on the defects located near the interface between the gate polysilicon and the gate oxide.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号